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Lecture 15: Recursive Least Squares Algorithm
Lecturer: Jiantao Jiao Scribe: Alejandro Saldarriaga Fuertes

The Recursive Least Squares (RLS) algorithm is a well-known adaptive filtering algorithm that efficiently
update or “downdate” the least square estimate. We present the algorithm and its connections to Kalman
filter in this lecture.

1 Recursive Least Squares [1, Section 2.6]

Let’s consider

Yi =


Y (0)
Y (1)
. . .
Y (i)

 = HiX + vi (1)

where

Hi =


h∗0
h∗1
. . .
h∗i

 , hj ∈ Cn×1

vi =


v(0)
v(1)
. . .
v(i)

 ∈ C(i+1)×1

X ∈ Cn×1

We also assume that

〈X,X〉 = Π0 (2)

〈vi, vi〉 = Ii+1 (3)

〈X, vi〉 = 0 (4)

The theory of linear estimation in lecture 2 yields an expression for such optimal estimator at step i:

X̂i = (Π−10 +H∗i Hi)
−1H∗i Yi (5)

Suppose we already obtained the estimator X̂i−1, and a new observation Y (i) arrived. How can we
update the estimate to X̂i? Can we use X̂i−1 to reduce the computational burden? Legendre and Gauss
found an algebraic trick to provide a fast recursive way to compute X̂i from X̂i−1 with O(n2) complexity.
One can make it even faster [2].

Before explaining the heart of RLS algorithm, we need the following lemma.

Lemma 1. (Sherman–Morrison–Woodbury formula) Let A ∈ Cn×n, C ∈ Cm×m, B ∈ Cn×m and D ∈ Cm×n.
Then, if all inverse operations below are well defined,

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1 (6)
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Proof The straight-forward approach yields

(A+BCD)(A−1 −A−1B(C−1 +DA−1B)−1DA−1)

= In −B(C−1 +DA−1B)−1DA−1 +BCDA−1 −BCDA−1B(C−1 +DA−1B)−1DA−1

= In +BCDA−1 −BC(C−1(C−1 +DA−1B)−1 +DA−1B(C−1 +DA−1B)−1)DA−1

= In +BCDA−1 −BC((C−1 +DA−1B)(C−1 +DA−1B)−1)DA−1

= In

If we define
Pi = (Π−10 +H∗i Hi)

−1,

then (5) becomes
X̂i = PiH

∗
i Yi.

Theorem 2. We have the following recurrence for all i ≥ 0:

P−1 = Π0 (7)

Pi = Pi−1 −
Pi−1hih

∗
iPi−1

1 + h∗iPi−1hi
(8)

Proof We notice that
H∗i Hi = H∗i−1Hi−1 + hih

∗
i

Therefore,
Pi = (P−1i−1 + hih

∗
i )−1

and the Sherman–Morrison–Woodbury applied to this case (m = 1) yields the desired result.

The complexity of each step is in O(n2) so the total complexity after i observations is O(in2), which is
linear in the number of observations.

Note that using this formula, we also obtain a recursive pattern for the estimates

X̂i = PiH
∗
i Yi

= (Pi−1 −
Pi−1hih

∗
iPi−1

1 + h∗iPi−1hi
)(H∗i−1Yi−1 + hiY (i))

= X̂i−1 −
Pi−1hih

∗
iXi−1

1 + h∗iPi−1hi
+ Pi−1hiY (i)− Pi−1hih

∗
iPi−1hiY (i)

1 + h∗iPi−1hi

which yields

X̂i = X̂i−1 +
Pi−1hi

1 + h∗iPi−1hi
(Y (i)− h∗i X̂i−1) (9)

with

X̂−1 = 0. (10)
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This expression can be mirrored with a Kalman filter where the term Y (i) − h∗i X̂i−1 represents the
innovation of the sequence. More formally, we can define the following state-space model

Xj+1 = Xj , X0 = X

Yj = h∗jXj + v(j)

〈X0, X0〉 = Π0

〈v(i), v(j)〉 = δij

〈X0, v(i)〉 = 0, i ≥ 0

(11)

At time i, the observation model in (11) is equivalent to that in (1), and the RLS solution is in fact
exactly the same as the Kalman filter solution for (11).

Hence, the RLS algorithm can be viewed as

1. a special case of Kalman filter under state-space model (11)

2. a recursive algorithm to solve the optimal linear estimator given model (1)

3. a recursive algorithm to solve the deterministic least squares problem

min
X

(X∗Π−10 X + ‖Yi −HiX‖2)

One way to connect the deterministic optimization with the stochastic optimization problem is through the
Gaussian trick. We would assume that X ∼ N (0,Π0), vi ∼ N (0, Ii+1), and X is independent of vi. Then,
we know that the maximum a posterior estimate of X is given by the deterministic optimization problem,
but we also know it is the optimal linear estimator due to the Gauss–Markov theorem.

2 Downdating Least Squares [1, Section 2.7]

Now we consider the opposite problem, which is trying to compute a linear estimator by forgetting some
observations. In other words, we want to find the best estimator of X given Y1:i which is the vector Yi
without the first element Y (0).

Here again, theory provides a closed expression for that optimal linear estimator X̂1:i:

X̂1:i = (Π−10 +H∗1:iH1:i)
−1H∗1:iY1:i (12)

Similarly to the RLS algorithm, we can derive a backward recursive equation that translates the operation
of forgetting the first observation.

Theorem 3. Let
Pi = (Π−10 +H∗i Hi)

−1

and
P1:i = (Π−10 +H∗1:iH1:i)

−1

such that
X̂i = PiH

∗
i Yi

and
X̂1:i = P1:iH

∗
1:iY1:i

Then, we have the following equality

P1:i = Pi −
Pih0h

∗
0Pi

−1 + h∗0Pih0
(13)
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Proof It suffices to see that
H∗1:iH1:i = H∗i Hi − h0h∗0

which, by the same reasoning as in the theorem 2, using the Sherman-Morrison-Woodbury formula, yields
the desired result.

We also obtain a recursive formula similar to (9)

X̂1:i = X̂i +
Pih0

−1 + h∗0Pih0
(Y (0)− h∗0X̂i) (14)

However, this time we can’t find the analoguous state space model from which the Kalman filter derives the
expression, as it would imply that the noise v(i) has a negative definite covariance matrix (〈v(i), v(j)〉 = −δij).
It was shown in [3] that the Kalman filter can be generalized to estimation in indefinite metric spaces.

3 Robust Least Squares

Now, we are interested in the optimization problem

min
X
‖Y −HX‖2

where the matrix H may be corrupted, ie we don’t have access to H but to a possibly biased version of it

H̃ = H + ∆H

In order to work around that inconvenience, the Total Least Squares [4] method adds a preliminary step,
which is finding an optimal pair [Ĥ, Ŷ ] that minimizes the following criterion

min
Ŷ ∈ span(H)

‖[H,Y ]− [Ĥ, Ŷ ]‖2F (15)

where ‖A‖2F =
∑

i,j |Ai,j |2 is the Frobenius norm in the matrix space. Once those estimates are found, we

then solve the initial optimization problem with the parameters Ŷ and Ĥ.

Theorem 4. Assume H is full column rank, and let σn be its smallest singular value. Assume also that
[H,Y ] is full rank and let σn+1 be its smallest singular value. If σn+1 < σn, then the TLS problem has a
unique solution given by

X̂ = (H∗H − σ2
n+1In)−1H∗Y (16)

We also have the formulation

X̂ = arg min
X

(‖Y −HX‖2 − σ2
n+1‖X‖2) (17)

For more on robustifying least squares, we refer the readers to [5, 6].
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