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ABSTRACT 

A soft decision gain modification is introduced and applied to the 

Ephraim-Malah gain function based on Maximum Mean Square 

Error Estimation (MMSE) [4-5] after amplitude compression. 

Non-linear evaluations of the noise overestimation factor and 

spectral floor are used  in the same way for the proposed gain 

modification and for non-linear spectral subtraction (NSS). 

Consistent and statistically significant ASR improvements of the 

proposed approach with respect to NSS are observed for different 

noise conditions considered in the AURORA2 and AURORA3 

corpora. As the non-linearity affects the two approaches in the 

same way, the result of comparison is particularly interesting. 

1. INTRODUCTION 

There is unquestionable evidence that additive noise, frequently 

present in many real-life situations, may strongly affect speech 

intelligibility and the performance of Automatic Speech 

Recognition (ASR) systems. Many solutions have been proposed 

for enhancing speech in order to make it more understandable 

and recognizable when it is corrupted by noise.  Uncorrelated 

additive noise is frequent in many real-life situations and a great 

attention has been devoted to reduce the distortion introduced by 

this type of noise. 

In the case of ASR, noise makes more severe the mismatch 

between training conditions, in which samples are collected for 

inferring the parameters of acoustic models, and test conditions. 

Essentially, two major approaches can be taken to reduce such a 

mismatch, namely, transforming the descriptors of the speech 

signal and adapting the models. Parameter transformation can be 

based on a theory that does not require any training or on 

functions whose parameters have to be inferred by the statistical 

analysis of a training corpus. 

Different approaches can be combined and certain combinations 

may lead to improvements with respect to the use of a single 

approach. 

This paper focuses on the use, in ASR, of gain functions that 

multiply noisy acoustic parameters transforming them into 

estimations of clean speech parameters, without any training 

involving a specific corpus. Among other possibilities, a gain can 

be expressed by the magnitude of the transfer function of a 

Wiener filter that attempts to subtract the noise component from 

the spectrum of a noisy speech signal. Recently, attempts have 

been made to incorporate some perceptual findings into this type 

of spectral subtraction. In [9], a non-linear spectral subtraction is 

proposed, motivated by the fact that, for spectral peacks, the 

signal has enough energy to mask the residual noise. Thus, for a 

specific frequency bin, the residual noise will not be perceived. 

This is not the case for spectral valleys  where a residual noise can 

be perceived. Moreover, human perception is less sensitive to 

spectral valleys suggesting to overestimate the noise component in 

these regions and perform a Nonlinear Spectral Subtraction (NSS). 

NSS appears to be beneficial not only for speech coding and 

transmission, but also for ASR [2], [7], [10]. The explanation 

could be that, in both cases, a non-linear compression of spectral 

samples is performed in such a way that the effects of noise do not 

perturb too much the spectral samples corresponding to peaks of 

the speech component; while the samples of spectral valleys,  are 

strongly attenuated.  

Unfortunately, even the application of non-linear techniques may 

leave residual distortions and it is interesting to investigate with 

which approach these distortions introduce less damage for ASR.  

A soft-decision gain modification for speech enhancement (but 

not for speech recognition) has been proposed in [8] and modified 

in [3] with the introduction of the a-priori speech absence 

probability (SAP). SAP is computed for each frequency bin using 

a global frame probability evaluated with heuristic considerations. 

In this paper, a different soft decision gain modification is 

introduced and applied to the Ephraim-Malah gain function based 

on Maximum Mean Square Error Estimation (MMSE) [4-5] after 

amplitude compression. Non-linear evaluations of the noise 

overestimation factor and spectral floor are used  in the same way 

for the proposed gain modification and for NSS with Wiener filter. 

Consistent and statistically significant ASR improvements of the 

proposed approach with respect to NSS are observed for different 

noise conditions considered in the AURORA2 and AURORA3 

corpora. As the non-linearity affects the two approaches in the 

same way, the result of comparison is particularly interesting. 

Basic theory and proposed modifications are described in sections 

2 and 3, while experimental set up and results obtained with the 

AURORA2 and AURORA3 corpora are described in section 4. 

The main focus of the paper being denoising, the ASR system was 

not trained nor adapted to the domain and the types of noise of the 

corpora. 

2. BACKGROUND  

Let {y(nT)} be a sequence of samples of a noisy speech signal; T 

is the time sampling period and n is the time sample index. Let 

{x(nT)} be the sequence of samples of the corresponding clean 

speech signal and {d(nT)} be a sequence of samples of additive 

noise which is uncorrelated with the clean speech. This is a 

frequent situation real-life ASR systems have to deal with.  
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Let 
2

k )m(Y  be the k-th frequency sample of the spectrum 

energy of {y(nT)}, computed in the m-th time window. Let 
2

k )m(X  and 
2

k )m(D  be the k-th spectrum energy sample, 

computed in the m-th time window, of the clean signal and the 

noise, respectively.  In order to adapt test conditions, in which 

noisy signals have to be recognized, to train conditions in which 

clean signals have been used, algorithms have been proposed for 

estimating 
2

k )m(X  from the observation of 
2

k )m(Y . A 

popular algorithm for this purpose uses a Wiener filter, whose 

transfer function is )m(Gk , to compute: 

2
kk

2

k )m(Y)m(G)m(X̂ =     (1) 

It has been found [9] that better recognition performance is 

obtained if the transfer function is conceived to perform a non-

linear spectral subtraction. In [7] and [10] it has been found that 

good results are obtained if the filter is used to perform a non-

linear spectral subtraction as follows: 
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where α(m) is a noise overestimation factor, and β(m) is a 

spectral floor used to avoid negative spectrum values. These two 

parameters vary in time as function of the Signal-to-Noise Ratio 

SNR(m), computed as follows: 
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where 
2

k )m(D̂ is an estimation of the k-th noise spectral sample 

at time m; α(m) and β(m) can be defined as possibility functions 

of SNR(m) as shown in Figure 1. 

α(m) 

1.5 

0 10 20 SNR(m) dB 

0.001 

β(m) 

1.0

0 15 20 SNR(m) dB 

0.01

Figure 1 – Examples of definitions of α(m) and β(m) as 

functions of SNR(m) 

)(mGk
can also be obtained with an approach proposed by 

(Ephraim and Malah) in [4-5].  In particular Ephraim–Malah 

MMSE log estimator is a short-time spectral amplitude estimator 

that minimizes the mean-square error of the estimated logarithms 

of the spectra, and it is well known that a distortion measure 

which operates on these logarithms is more suitable for speech 

processing than measures taken on the power spectra. It is 

defined as follows: 
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The computation of the a priori SNR requires the knowledge of 

the clean speech spectrum, which is not available.  An estimation 

can be obtained with a decision-directed approach [4] as follows: 
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In [1], it is shown that it is convenient for speech coding to make 

η(m) dependent on the global SNR(m) and to assign to it a high 

value if SNR(m) is low and a low value if SNR(m) is high. This 

variation is adopted in our experimentation.  

3. PROPOSED METHOD 

In this paper we propose a modification of Ephraim-Malah gain 

by making the estimation of the a priori and the a posteriori SNR 

dependent on the noise overestimation factor α(m) and the 

spectral floor β(m) as follows: 
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where the noise overestimation factor α(m) and the spectral floor 

β(m) vary with global SNR(m) as shown in Figure 1. The adopted 

approach modifies the estimates of 
kγ  and 

kξ  while maintaining 

the global shape of the gain function ( )kkkG ξγ , . The modified 

gain function can be expressed  as follows:  

( ) ( ))(
~

),(~)(),(
~

mmGmmG kkkkkk ξγξγ =
with )(~),(

~
mm kk γξ computed according to (8) and (9). 

Figure 2 shows the original Ephraim-Malah attenuation rule (4) 

and its version with the above-proposed modifications. 

The effect of the introduced modification is a gradual reduction of 

the attenuation produced by the original gain in areas of high 

posterior SNR 
kγ , as the global SNR increases. 

Noise estimation appears in the computation of (8) and (9). For 

the experiments described in this paper, an estimate of the noise 

spectrum amplitude is obtained by a first-order recursion in 

conjunction with an energy based Voice Activity Detector (VAD) 

as follows [7]: 
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where, λ controls the update speed of the recursion  and µ the 

allowed dynamics of noise; σ(m) is the noise standard deviation, 

estimated as: 

( ) ( )( )222 ˆ)(1)1()( mDmYmm kk −−+−= γγσσ         (11) 

The values for  and µ are respectively 0.9 and 4.0. 

Figure 2 - Original attenuation rule computed with (4) and its 

version with the proposed modifications (8) and (9). 

4. EXPERIMENTAL SETUP AND RESULTS 

Experiments were conducted with a hybrid HMM-NN ASR 

system described in [6]. As the purpose of this paper is to 

compare different denoising methods whose parameters are 

independent from the recognizer, the results should not depend 

on the type of recognizer used. The ASR has been trained for the 

target languages using large, domain and task independent 

corpora, like SpeechDat1-2, not collected in noisy environments 

and without added noise. Aurora2-3 corpora were not used to 

train the ASRs but just to test them. Acoustic modeling was 

made using phonetical sub-word units instead of whole word 

models. 

Aurora2 and Aurora3 data were used for comparing the 

performance of baseline Wiener filtering, SNR-dependent 

Wiener filtering, baseline Ephraim-Malah short-time spectral 

attenuation rule based on log estimator and the proposed 

modification of the Ephraim-Malah rule. Tables I-VI show the 

results on Aurora2 expressed in Word Accuracy (%). Confidence 

interval on WA is 0.2%. Averages are computed in the 0-20 dB 

range.  

Experimental results show that: 

• Ephraim-Malah gain outperforms Wiener gain in its 

baseline version; 

• this tendency is confirmed when using the modified 

version of the rules as proposed in [7] for Wiener gain 

and in this paper for Ephraim-Malah gain; 

• The best results are always obtained with the modified 

Ephraim-Malah gain, with the only exception of test C 

(mainly conceived for testing channel mismatch) where 

the best result is obtained with baseline Ephraim-Malah

gain. 

Another test was performed on the Aurora3 corpus with Speech-

Dat car connected digits in Italian, Spanish and German on the 

High Mismatch test set and on the noisy component (CH1) of the 

training set (used as test set) 

.

Table I  Test set A results for Aurora2 without denoising 

SNR/dB Subway Babble Car Exhibit Average 

clean 99.4 98.9 99.0 99.0 99.1 

20 98.6 98.6 98.5 98.5 98.5 

15 97.1 97.1 97.7 96.0 97.0 

10 91.7 92.3 91.9 89.0 91.2 

5 76.6 78.0 76.4 70.4 75.3 

0 47.0 51.9 34.6 36.1 42.4 

-5 15.6 22.9 9.1 11.7 14.8 

Average 82.2 83.6 79.8 78.0 80.9 

Table II  Test set A  results for Aurora2. Denoising with baseline 

Wiener filtering 

SNR/dB Subway Babble Car Exhibit Average 

clean 99.4 98.9 99.0 99.0 99.1 

20 98.5 98.7 98.9 98.7 98.7 

15 98.1 97.8 98.6 97.5 98.0 

10 94.0 94.8 96.5 93.2 94.6 

5 85.7 83.3 89.4 82.0 85.1 

0 64.9 56.6 69.5 60.5 62.9 

-5 35.8 25.0 31.3 30.3 30.6 

Average 88.2 86.2 90.6 86.4 87.9 

Table III Test set A  results for Aurora2. Denoising with SNR-

dependent Wiener filtering 

SNR/dB Subway Babble Car Exhibit Average 

clean 99.4 98.9 99.1 99.0 99.1 

20 98.7 98.8 98.9 98.8 98.8 

15 98.3 98.0 98.5 97.5 98.1 

10 93.7 95.0 96.5 93.5 94.7 

5 85.1 84.5 90.0 82.0 85.4 

0 63.9 60.0 70.9 60.2 63.8 

-5 34.2 27.4 33.8 32.2 31.9 

Average 87.9 87.3 91.0 86.4 88.1 

I - 959
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Table IV  Test set A results for Aurora2. Baseline Ephraim-

Malah denoising 

SNR/dB Subway Babble Car Exhibit Average 

clean 99.4 98.9 99.1 99.0 99.1 

20 98.5 98.6 98.8 98.5 98.6 

15 98.1 97.7 98.6 97.1 97.9 

10 93.9 94.1 97.0 92.9 94.5 

5 85.5 82.9 91.9 83.8 85.8 

0 67.5 57.3 75.1 61.9 65.4 

-5 38.2 25.9 40.0 35.2 34.8 

Average 88.7 86.1 92.1 86.8 88.4 

Table V  Test set A results for Aurora2. Modified Ephraim-

Malah denoising 

SNR/dB Subway Babble Car Exhibit Average 

clean 99.4 98.9 99.0 99.0 99.1 

20 98.6 98.7 98.8 98.9 98.8 

15 98.3 98.0 98.7 97.4 98.1 

10 94.3 94.6 97.2 93.7 94.9 

5 85.5 84.2 91.9 82.9 86.1 

0 66.7 61.4 76.1 63.5 66.9 

-5 37.3 28.4 41.0 35.5 35.5 

Average 88.7 87.4 92.5 87.3 89.0 

Table VI   Comparative denoising results for Aurora2  test sets 

A, B, C 

Denoising Method Test Set 

A

Test Set 

B

Test Set 

C

No Denoising 80.9 83.2 77.5 

Wiener baseline 87.9 88.1 86.4 

Wiener SNR dep 88.1 88.3 86.3 

Ephraim-Malah baseline 88.4 88.1 87.3 

Ephraim-Malah modif. 89.0 88.6 86.9 

The tables VII and VIII compare the baseline of the two 

denoising gains (Wiener and Ephraim-Malah) and their modified 

versions on Aurora3 (expressed in WA %). Confidence interval 

for statistical relevance of results is shown for each test set. 

Ephraim-Malah log estimator is always better than Wiener 

subtraction, both in the baseline version and in the modified 

version. The Ephraim-Malah modified gain obtains the best 

results, with an average error reduction of 8.4% w.r.t the Wiener 

SNR dep. gain, and an average 50.3% error reduction w.r.t. the 

case without denoising. The modification introduced in the 

Ephraim-Malah gain produces an average error reduction of 

22.9% w.r.t. the baseline Ephraim-Malah gain.  

Table VII   Test on Aurora 3 High Mismatched test set 

Aurora 3  Test on High Mismatched  test set 

Denoising 

Method 

Italian 
C.I.  1.4 

Spanish 
C.I.  1.2

German 
C.I.  1.7

Average

No denoising 56.7 69.9 82.5 69.7

Wiener baseline 68.1 81.3 87.8 79.1

Wiener SNR dep. 74.9 86.2 89.2 83.4

Ephraim-Malah 

baseline 
69.7 81.3 89.7 80.2

Ephraim-Malah 

modified 
75.6 87.7 90.5 84.6

Table VIII   Test on Aurora 3 Noisy component (CH1) of the train 

set (used as test) 

Aurora 3  Test on CH1 component of train set 

Denoising 

Method 

Italian 
C.I.  0.9

Spanish 
C.I.  0.6

German 
C.I.  1.0

Average

No denoising 58.6 73.8 85.8 72.7

Wiener baseline 70.7 81.3 89.9 80.6

Wiener SNR dep. 76.3 88.9 90.8 85.3

Ephraim-Malah 

baseline 
71.5 85.9 90.6 82.6

Ephraim-Malah 

modified 
77.5 90.6 92.1 86.7

5. CONCLUSIONS 

In this paper, the application of Ephraim-Malah short-time 

spectral amplitude log estimator to speech recognition has been 

investigated. While widely and successfully used in speech 

enhancement, it is reported in the literature [11] that the 

application of the corresponding suppression rule does not result 

in a clear advantage over spectral subtraction when used in ASR.   

The experiments described in this paper made evident that  non-

linear versions of these rules depending on global SNR reduce the 

WER in ASR when additive noise is present. Furthermore, the use 

of the non-linear technique proposed provides consistently better 

results when applied to the Ephraim-Malah attenuation rule based 

on MMSE log estimator with respect to the application to Wiener 

filtering.  
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